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A B S T R A C T

The aim of this study was to investigate the potential of a micro-electromechanical NIR spectrophotometer (NIR-
MEMS) and visible (Vis)/NIR hyperspectral imaging (HSI) systems to predict the moisture content, antioxidant
capacity (DPPH, FRAP) and total phenolic content (TPC) of treated ground peppercorns. Partial least squares
(PLS) models were developed using spectra from peppercorns treated with hot-air, microwave and cold plasma.
The spectra were acquired using three spectroscopy systems: NIR-MEMS (1350–1650 nm), Vis-NIR HSI
(450–950 nm) and NIR HSI (957–1664 nm). Very good predictions of TPC (RPD > 3.6) were achieved using
NIR-MEMS. The performance of models developed using Vis-NIR HSI and NIR HSI were good or very good for
DPPH (RPD > 3.0), FRAP (RPD>2.9) and TPC (RPD > 3.8). This study demonstrated the potential of NIR-
MEMS and Vis-NIR/NIR HSI to predict the moisture content, antioxidant capacity and total phenolic content of
peppercorns. The spectroscopy technologies investigated are suitable for use as in-line PAT tools to facilitate
improved process control and understanding during peppercorn processing.

1. Introduction

Pepper (Piper nigrum L.) is a widely used spice (Meghwal &
Goswami, 2013; Shityakov et al., 2019). Black, green and white pep-
percorns are obtained from the same plant species but differ in the
manner of preparation for the market, resulting in different flavours
and degrees of spiciness (Nikolić et al., 2015). Black peppercorns are
prepared by briefly cooking and drying the unripe corns, white pep-
percorns consist of the dried ripe corns with the outer pericarp re-
moved, while green peppercorns are harvested unripe and then dried
(Friedman et al., 2008; Meghwal & Goswami, 2013). The Piper nigrum L.
plant is rich in essential oil (2–3%) and is a source of numerous bio-
logically active constituents such as monoterpenes, sesquiterpenes, and
other volatile compounds (Nikolić et al., 2015). Piperine is the major
pungent alkaloid present in the corns of Piper nigrum L. and is associated
with immunomodulatory, anti-oxidant, anti-asthmatic, anti-carcino-
genic, anti-inflammatory, anti-ulcer, anti-amoebic (Meghwal &
Goswami, 2013) and diuretic properties (Shityakov et al., 2019). Pink
peppercorns (Schinus terebinthifolius) are used as condiments and have a

high demand in the spice market. Extracts rich in phenolic substances
from the residues of the pink pepper tree processing industry exhibited
significant activity against multidrug-resistant bacteria (Gomes et al.,
2020).

Preservation of peppercorns may be achieved by application of
several process treatments which reduce the moisture content and/or
improve microbial quality. Hot air drying is the most widely employed
processing treatment for peppercorns. Recent studies have proposed the
use of microwave assisted drying and cold plasma (Charoux et al.,
2020) for peppercorn processing. Peppercorns treated with microwaves
had improved retention of the main aroma compounds (Plessi, Bertelli,
& Miglietta, 2002). The use of microwaves combined with hot air
drying increases the efficiency of the drying process, improves moisture
uniformity, shortens the drying time while reducing thermal effects on
bioactives (Schiffmann, 2014). Cold plasma is a non-thermal tech-
nology that has been used as an alternative for microbial inactivation in
solid and liquid foods (Charoux et al., 2020; Misra et al., 2014).
Montenegro, Ruan, Ma, and Chen (2002) reported that cold plasma
discharges applied directly to the food product proved effective in
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reducing the number of Escherichia coli O157:H7 cells in apple juice, by
up to 7 log units.

Quality and process control measurements in the food industry are
frequently carried out off-line in laboratories rather than on-line. The re-
sultant delay incurred between sampling and measurement limits optimi-
sation and control of production processes. Adoption of in-line process
analytical technology (PAT) tools leads to an improved understanding of
both the process and product variability (O'Donnell, Fagan, & Cullen, 2014).
This enhanced understanding enables efficient process control strategies
and real-time process feedback, as well as continuous knowledge building of
the process itself (O'Donnell et al., 2014). Potential benefits of PAT adoption
are considerable and include higher quality products, improved product
consistency and reduced manufacturing costs (Pu, O'Donnell, Tobin, &
O'Shea, 2020). Visible (Vis)/NIR spectroscopy is one of the most promising
sensing approaches for in-line control of peppercorns preservation proces-
sing (Lapcharoensuk et al., 2019; Orrillo et al., 2019; Wilde, Haughey,
Galvin-King, & Elliott, 2019). The advantages of spectroscopic methods for
bioprocess monitoring are manifold and include real-time capability, non-
destructive nature, ease of maintenance and the possibility for simultaneous
determination of multiple target analytes (Zimmerleiter et al., 2019). NIR
combined with multivariate data analysis has been previously used for rapid
determination of piperine and other pepper oil components in black and
white ground pepper (Schulz, Baranska, Quilitzsch, Schütze, & Lösing,
2005), and to detect adulteration of ground black pepper (Wilde et al.,
2019). Challenges to the adoption of Vis-NIR spectroscopy for in-line pro-
cess control applications include PAT tool robustness in a plant environ-
ment, limited field of view and the development of the chemometric models
required.

Advances in microelectromechanical systems (MEMS), semi-
conductors, computing capabilities, and chemometrics have allowed
the miniaturisation of systems for field and inline applications
(Rodriguez-Saona & Aykas, 2019). MEMS transducers are fabricated
using solid-state micromachining techniques commonly used by the
semiconductor industry in the production of integrated circuits
(Mendelson, 2012). Miniature spectrophotometers which use MEMS
technology are compact, robust and relatively low cost devices
(Zimmerleiter et al., 2019). MEMS-based Fabry-Perot interferometers
have been employed in miniaturised NIR spectrophotometers (Yan &
Siesler, 2018). The use of common optical paths in Fabry-Perot inter-
ferometers (FPI) make them less sensitive to environmental dis-
turbances than Michelson interferometers which use different optical
paths (Wang, Shyu, & Chang, 2010). MEMS based FPI usually consist of
a vertically integrated structure composed of two mirrors separated by
an air gap, wavelength tuning is achieved by applying a voltage be-
tween the two mirrors resulting in an electrostatic force which pulls the
mirrors closer. However the main disadvantage associated with two-
mirror FPI is limited spectral range (Parashar, Shah, Packirisamy, &
Sivakumar, 2007).

Hyperspectral imaging also known as chemical or spectroscopic
imaging, is a PAT tool for food quality and safety control that integrates
conventional imaging and spectroscopy to obtain both spatial and
spectral information from a sample (Gowen, O'Donnell, Cullen,
Downey, & Frias, 2007). Use of hyperspectral imaging systems facilitate
improved inspection of raw material, in-process and final product.
Hyperspectral images or hypercubes consist of several congruent
images representing intensities at different spectral bands and spatial
positions. These hypercubes are three-dimensional blocks of data,
comprising one spectral (λ) and two spatial dimensions (X, Y). Each
pixel in a hyperspectral image contains the spectrum of that specific
position, representing the light-absorbing and/or scattering properties
of the spatial region represented, which can be used to characterise the
composition of that particular pixel (Gowen et al., 2007). NIR-HSI has
been evaluated for prediction of black pepper adulteration with papaya
seeds (Orrillo et al., 2019) and to identify samples treated with selected
preservation technologies (Achata, Inguglia, Esquerre, Tiwari, &
O'Donnell, 2019).

Principal component analysis (PCA) is frequently employed as an
exploratory tool in chemometric analysis of Vis-NIR spectral data. PCA
transforms a spectral dataset with highly correlated spectral bands into
a smaller set of uncorrelated components. This reduces the original
dataset, filtering noise and redundancies based on the variance–cov-
ariance structure of the original data, to reveal hidden and simplified
structure/patterns (Mujica, Rodellar, Fernández, & Güemes, 2010).
Partial least squares (PLS) is the most commonly used regression
method to predict composition or quality parameters using Vis-NIR
spectroscopy data. Spectral pre-treatments may be employed to correct
for the effects of light scattering and differences in the effective path
length on Vis-NIR spectra and improve the performance of PLS models
(Esquerre, Gowen, Burger, Downey, & O'Donnell, 2012). Variable se-
lection methods have also improved the performance of Vis-NIR PLS
models and reduced the processing times required by selecting the most
informative wavelengths (Achata et al., 2019).

The aim of this study was to investigate the use of an NIR MEMS
spectrophotometer and Vis-NIR/NIR hyperspectral imaging systems to
predict the moisture content, antioxidant capacity and total phenolic
content of treated ground peppercorns.

2. Materials and methods

2.1. Peppercorn samples

Black, white and green (Piper nigrum) and pink peppercorns (Schinus
terebinthifolius) were used in this study. Black peppercorns produced in
India were purchased from East End Foods PLC (West Bromwich, UK).
White, green and pink peppercorns were purchased from Greenfields
(London, UK). All the samples were ground using a blender mill
(Cookworks, China) and sieved to 1 mm particle size using a sieve-
shaker (VWR International LLC, Ireland). Ground peppercorn samples
of each type (i.e. black, white, green and pink peppers) were grouped
into 41 subsamples of 5 g each for treatment as described in section 2.2
(n = 4 peppercorn types × 41 subsamples = 164).

2.2. Process treatments of ground peppercorns

The following treatments were applied to the ground peppercorns
samples: (1) hot air drying (Drying chamber E28, Binder, Germany) at se-
lected temperatures (40, 60, 80 or 100 °C) and treatment times (5, 10, 15
and 20 min) (n = 4 temperatures × 4 times × 4 peppercorn types = 64);
(2) microwave oven-drying (NN-CF778S, Panasonic, UK) at selected power
levels (250, 400, 600 or 1000 W) and treatment times (1, 2, 3 and 5 min)
(n = 4 power levels × 4 times × 4 peppercorn types = 64); and (3) cold
plasma treatment (Leap100, PlasmaLeap Technologies, Ireland) at selected
voltages (150 and 300 V) and treatment times (5, 10, 15 and 20 min)
(n = 2 voltage × 4 time × 4 peppercorn type = 32). Treated (n = 160)
and control samples (n = 4) were placed in a desiccator for 20 min, packed
and stored in dark conditions prior to analyses. Treated and control samples’
spectra were acquired as described in section 2.4. Each sample was split for
moisture analysis (1 g) and for antioxidant capacity and total phenolic
analyses (2 g, Section 2.3). Moisture content was determined by oven-
drying the samples at 105 °C for 16 h.

2.3. Antioxidant capacity and total phenolic content analyses

All ground peppercorn samples (n = 164) were further processed
for antioxidant capacity and total phenolic content analyses. Briefly,
ground peppercorn samples were mixed thoroughly with an 80% me-
thanolic solution (1:10, w/v) and placed in an orbital shaker (Heildolph
instruments, Schwabach, Germany) at 170 rpm at room temperature
overnight. The extracts were filtrated, evaporated, freeze-dried and
stored at −20 °C before further analyses. All chemical determinations
were performed in duplicate with 3 measurements for each replication
(n = 6).

C.A. Esquerre, et al. LWT - Food Science and Technology 131 (2020) 109761

2



2.3.1. DPPH activity
The 1,1-Diphenyl-2-Picryl-Hydrazyl (DPPH) activity was measured

following the method proposed by Nicklisch and Waite (2014), with the
modifications described by Garcia-Vaquero, O'Doherty, Tiwari,
Sweeney, and Rajauria (2019). Pepper extracts and ascorbic acid were
assayed at 1 mg per mL of working solution (0.1 M citrate phosphate
buffer with 0.3% of Triton X-100). The reaction was performed in a
Greiner 96 flat-bottomed microplate by adding 10 μL of a 2 mM DPPH
solution in methanol to each well. The percentage of DPPH inhibition
per mg of extract was calculated by subtracting the absorbance readings
of each well at 515 nm prior to DPPH solution addition and at 30 min
after DPPH solution addition.

2.3.2. FRAP activity
The ferric reducing antioxidant power (FRAP) was determined using

the method described by Benzie and Strain (1996) with the modifica-
tions as described by Garcia-Vaquero et al. (2019). Briefly, pepper ex-
tracts were assayed against trolox standards in a working solution
containing 10:1:1:1.4 of acetate buffer (300 mM, pH 3.6), ferric
chloride (20 mM in Milli-Q water), 2,4,6-Tripyridyl-s-Triazine (TPTZ)
(10 mM in 40 mM HCl) and Milli-Q water. The reaction was performed
in 96 well plates (Greiner Bio-one, Germany) and incubated at 37 °C for
30 min. The absorbance of the reaction was measured at 593 nm using
an UV–Vis spectrophotometer (Epoch™ 2, Biotek, VT, USA). FRAP va-
lues were expressed as mM trolox equivalents (TE) per 100 g sample.

2.3.3. Total phenolic content
The total phenolic content (TPC) of the pepper extracts was de-

termined according to the method described by Ganesan, Kumar, and
Bhaskar (2008) with slight modifications. Briefly, samples at appro-
priate dilutions were assayed together with gallic acid as standard.
2 mL of a Na2CO3 solution (2%, w/v) were added to 100 μL of the tested
extracts. The solutions were mixed with 100 μL of Folin-Ciocalteu
phenol reagent (0.5 M) and allowed to stand for 30 min in dark con-
ditions. The absorbance of the reaction was measured at 720 nm using
an UV–Vis spectrophotometer (Epoch™ 2, Biotek, VT, USA). The total
phenolic content (TPC) of the samples was expressed as mg gallic acid
equivalents (GAE)/100 g sample.

2.4. Spectra acquisition

2.4.1. NIR MEMS spectrophotometer
Ground peppercorn spectra were acquired using an NIR-MEMS

spectrophotometer (NIROne, Spectral Engines Oy, Finland) in the range
of 1350–1650 nm at 2 nm intervals. The miniaturised NIR-MEMS
spectrophotometer consisted of a single element InGaAs detector, a
Fabry-Perot interferometer, two tungsten vacuum lamps and an USB
interface to a laptop. Black reference (Ib) was recorded after turning off
the lamp, while the white reference (Iw) was recorded using a Thorlab
white reference target SM05CP2C (Thorlabs GmbH, Germany) and
setting the lamp power to 100%. Samples spectra (Is) were acquired and
reflectance calculated according to R = (Is – Ib)/(Iw – Ib).

2.4.2. Vis-NIR hyperspectral imaging systems
Hyperspectral images of ground peppercorn were obtained using

two line scanning hyperspectral imaging systems (DV Optics, Padova,
Italy), one in the visible-near infrared (Vis-NIR) range of 400–1000 nm
with a spectral resolution of 5 nm and the other in the near infrared
(NIR) range of 880–1720 nm with a spectral resolution of 7 nm. The
Vis-NIR HSI system consisted of a CCD camera (580 × 580 pixels;
Basler, Ahrensburg, Germany), a spectrograph (Spectral Imaging Ltd.,
Oulu, Finland), cylindrical light diffuser and moving base. The NIR-HSI
system consisted of an InGaAs camera (320 × 240 pixels; Sensors
Unlimited, Inc., Princeton, NJ, USA), a spectrograph (Spectral Imaging
Ltd., Oulu, Finland), five halogen lamps (3 × 50 W and 2 × 20 W), a

cylindrical light diffuser, moving base and a computer (Hernández-
Hierro et al., 2014). The speed of the moving base was set at 3 mm/s
(spatial resolution 0.28 × 0.28 mm pixel size) and 20 mm/s (spatial
resolution 0.3 × 0.3 mm pixel size) for the Vis-NIR and NIR systems
respectively. After scanning 50 lines of black reference and 50 lines of a
white tile (reflectance > 93%) with a known reflectance (Rw) the
signal from the sample was converted and stored as reflectance R = Rw
(Is – Ib)/(Iw – Ib) (Achata, Esquerre, O'Donnell, & Gowen, 2015).

Hyperspectral imaging of all samples was carried out at room
temperature (~20 °C). Acquired 3-D data hypercubes were saved in
ENVI formatted files and imported into MATLAB (The MathWorks Inc.,
Natick, MA, USA) for further spectral data pre-processing and data
analysis, using in-house developed functions and scripts. The spectra
obtained from both HSI systems were trimmed to spectral ranges of
450–960 nm and 957–1664 nm to remove noise at both ends of the
spectra. Hypercubes were unfolded by rearranging the three-dimen-
sional hypercubes (X, Y, λ) into a two-dimensional matrix (X × Y) to
facilitate algorithm development. Regions of interest (ROI) were care-
fully selected from each sample to avoid edge effects detected following
analysis of PCA scores maps. Mean spectra of each sample were cal-
culated from the selected ROI and used for model development.

2.5. Principal component analysis

PCA of standard normal variate (SNV) pretreated spectral datasets
was carried out to investigate the relationships between the peppercorn
samples and spectra acquired using the 3 spectroscopy systems, and
also to identify potential outliers using the T2 statistic. A sample was
considered as an outlier if the T2 value was>T2crit = A × F(0.05,A,n−A)

× (n-1)/(n-A), where A is the number of significant components, n is
the number of spectra in the dataset and F(0.05,A,n−A) is the F statistic
(with α = 0.05, A and n − A degrees of freedom).

2.6. Development of prediction models

PLS regression models to predict moisture, antioxidant capacity and
total phenolic content of samples were developed using spectral data,
spectral pre-treatments and the ensemble Monte Carlo variable selec-
tion (EMCVS) method. SNV, median scaled (MS), Savitzky-Golay 7
points second order polynomial first derivative (FD), Savitzky-Golay 7
points second order polynomial second derivative (SD), Savitzky-Golay
11 points fourth order polynomial third derivative (TD), linear de-
trending second-order polynomial (LD), asymmetric least squares
(AsLs) and all combinations of any two spectral pre-treatments were
tested. The EMCVS method was employed to select the bands that
produce the most stable regression coefficients (Esquerre, Gowen,
O'Gorman, Downey, & O'Donnell, 2017). The spectral datasets were
split randomly into calibration and validation datasets. The number of
latent variables in the PLS model were selected using the root mean
square of 10-fold cross validation and a jaggedness of the regression
vector to avoid overfitting (Gowen, Downey, Esquerre, & O'Donnell,
2011).

The performance of the regression models was assessed using the
root mean square error (RMSE), the coefficient of determination (R2),
the ratio of standard deviation of the reference data and the RMSE
(RPD) for cross-validation and validation sets. The best model was se-
lected based on the number of latent variables, selected wavebands and
the geometric mean of the RPD values from calibration (n = 123) and
validation (n = 41) sets. The performance of the prediction models
based on RPD values for complex matrices can be classified as excellent
(RPD > 4.1), very good (RPD 3.5–4.0), good (RPD 3.0–3.4), fair (RPD
2.5–2.9) and poor (RPD 2.0–2.4) (Williams, 2014). It is not re-
commended to use a prediction model when the RPD values are in the
range 0.0–1.9.
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3. Results and discussion

3.1. Ground peppercorn moisture, antioxidant capacity and TPC

The moisture, antioxidant capacity (DPPH and FRAP) and TPC of
control black, white, green and pink peppercorn samples are sum-
marised in Table 1. Pink peppercorn samples had higher TPC and an-
tioxidant activities than the other peppercorn types. White peppercorn
samples had the lowest levels of all analysed parameters. The high TPC
values in pink peppercorns (Schinus terebinthifolius) may be due to in-
terspecies variation with respect to Piper nigrum L. (black, white and
green peppercorns). Similar variations were reported by Shan, Cai, Sun,
and Corke (2005) with TPC values ranging from 0.30 to 0.78 g GAE per
100 g DW in black, white and green peppercorns. Differences in TPC
values between black and white peppercorns were also investigated by
Agbor, Vinson, Oben, and Ngogang (2006), with a higher concentration
of TPC in black compared to white peppercorns reported.

3.2. Ground peppercorn spectra

Fig. 1 shows the mean spectra of the control samples acquired using
the three spectroscopy systems i.e. NIR-MEMS, Vis-NIR HSI and NIR
HSI. The NIR-MEMS spectra of the control samples were similar. A
broad absorption band may be observed around 1468 nm (Fig. 1a)
which can be attributed to the first overtone of the H–OH bond
(Rodriguez-Saona, Ayvaz, & Wehling, 2017; Segtnan, Sasic, Isaksson, &
Ozaki, 2001). Large variations may be observed between the Vis-NIR
HSI spectra of the control samples (Fig. 1b). The main difference be-
tween the spectra is the sharp absorption band around 665 nm in the
green peppercorn spectra which is related to chlorophyll content
(Seifert & Zude-Sasse, 2016). The NIR-HSI spectra of the control sam-
ples have similar profiles. In addition to a broad band at 1468 nm, an
absorption band around 1202 nm may observed which can be attrib-
uted to the 2nd overtone of C–H bond stretching (Fig. 1c). Shoulders are
also observed around 1272 nm (water-protein interaction), 1363 nm
and 1580 nm in the NIR-HSI spectra.

3.3. Principal component analysis

PCA of SNV pretreated spectra (n = 164) of the ground peppercorn
samples identified three samples as outliers using the T2 statistic. The
first three PCs of the remaining ground peppercorn SNV treated spectra
(n = 161) from the NIR-MEMS, Vis-NIR HSI and NIR HSI systems are
shown in Fig. 2. Good separation of the four types of peppercorn was
observed in the PC score plots for the 3 spectroscopy systems (Fig. 2).
Ninety two % of the variance in the NIR-MEMS data was explained by
the first two principal components PC1 (73%) and PC2 (19%). PC1
loadings were largely influenced by the absorption bands attributed to
weakly (1410 nm) and strongly (1456 nm) H-bonded water (Segtnan
et al., 2001). Whereas 98% of variance in the Vis-NIR HSI data were
explained by the first two principal components PC1 (54%) and PC2
(44%). PC1 loadings were mainly influenced by absorption bands at
650 nm which may be attributed to chlorophyll (Seifert & Zude-Sasse,
2016). In the NIR-HSI spectra PC1 explained 93.2% of the variance with

PC1 loadings mainly influenced by the absorption bands at 1216, 1342,
1412 and 1643 nm which may be attributed to the 2nd overtone of C–H
bond stretching, the combination of –CH2, first overtone of –OH
stretching in water and first overtone of aromatic –CH respectively
(Kumagai et al., 2003; Rodriguez-Saona et al., 2017; Šašić & Ozaki,
2000).

3.4. Prediction models for moisture, antioxidant capacity and TPC

Table 2 shows the best performing models developed using the NIR-
MEMS, Vis-NIR HSI and NIR HSI systems to predict moisture, DPPH,
FRAP and TPC. These models were built using 120 randomly selected
samples and validated using the remaining 41 samples.

The best prediction models developed using the NIR-MEMS per-
formed very well for TPC (RPD 3.5–3.7), fairly for FRAP (RPD 2.5),
poorly for moisture (RPD 2.3–2.5) and were not suitable for DPPH (RPD
1.8–2.1) prediction. The performance of the best prediction models

Table 1
Moisture, DPPH, FRAP and TPC of control ground peppercorn samples.

Peppercorn type Moisture
(g/100 g
sample)a

DPPH (%)a FRAP (mM
TE/100 g
sample)a

TPC (mg GAE/
100 g sample)a

Black 10.9 ± 0.2 83.0 ± 2.1 1005 ± 87 633 ± 35
White 11.1 ± 0.2 57.0 ± 3.9 279 ± 4 156 ± 6
Green 8.5 ± 0.1 90.8 ± 0.8 3089 ± 512 832 ± 52
Pink 13.2 ± 0.2 98.9 ± 1.1 8336 ± 164 2761 ± 193

a Values represents mean ± standard error (n = 2).

Fig. 1. Mean spectra of control samples of black, white, green and pink ground
peppercorn samples acquired using (a) NIR-MEMS, (b) Vis-NIR HSI and (c) NIR
HSI systems. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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developed using the Vis-NIR HSI and NIR HSI spectral ranges were si-
milar for DPPH, FRAP and TPC yielding good (RPD 2.9–3.1), fair (RPD
2.8–2.9) and very good (RPD 3.8–4.1) predictions respectively. The best
moisture content prediction model developed using the NIR HSI spectra
yielded very good (RPD > 3.5) predictions, while the best model de-
veloped using the Vis-NIR HSI spectra yielded poor moisture content
predictions (RPD 2.3–2.4). The very good performance of the models
developed using the validation sets (Table 2) demonstrated the poten-
tial of NIR-MEMS and Vis-NIR/NIR HSI to predict the moisture content,
antioxidant capacity and total phenolic content of peppercorns. Both
technologies can be used for in-line control of multiple analytes in
peppercorn processing.

Fig. 3 shows the selected bands for the best prediction models

developed using the NIR HSI spectral range. The selected bands
in the range 978, 1013–1160, 1083–1174, 1265–1286, 1342,
1405–1450,1461 - 1475 and 1538–1664 nm may be attributed to the
second overtone O–H stretching, the second overtone of C–H stretching
in –CH3 groups, the combination of –CH2, protein-water interaction, the
first overtone of C–H stretching and C–H bending combination, first
overtone O–H stretching of weak bonded water, first overtone O–H
stretching of strong bonded water and first overtone of aromatic –CH
respectively (Kumagai et al., 2003; Rodriguez-Saona et al., 2017; Šašić
& Ozaki, 2000).

Due to the larger spectral range of the NIR HSI system, better pre-
diction models were developed compared to the NIR-MEMS systems.
However the prediction models developed using the NIR-MEMS spectra

Fig. 2. Principal component analysis scores (I) and loadings (II) of the three first principal components (a) NIR-MEMS (b) Vis-NIR HSI (c) NIR-HSI SNV treated
spectra of ground peppercorn samples.
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Fig. 3. Mean ground peppercorn NIR-HSI pretreated spectra and selected bands
for (a) moisture, (b) DPPH, (c) FRAP and (d) TPC prediction.
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performed very well for TPC and fairly for FRAP. Sensor fusion of
multiple complementary NIR MEMS systems based on FPIs could be
employed to extend the total spectral range measured for model de-
velopment and improve prediction performance.

4. Conclusions

This study demonstrated the potential of an NIR MEMS spectro-
photometer and Vis-NIR/NIR hyperspectral imaging systems to predict
moisture content, antioxidant capacity and total phenolic content
properties of ground peppercorns. The potential of the NIR-MEMS
spectrophotometer for food applications was demonstrated through
prediction models developed for FRAP (RPD > 2.4) and total phenolic
content (RPD > 3.6) of ground peppercorns. Both HSI systems in-
vestigated were demonstrated to be suitable for use as rapid process
analytical tools for evaluation of antioxidant capacity (DPPH
RPD > 3.0, FRAP RPD>2.9) and TPC (RPD > 3.8) of ground pep-
percorns. The NIR HSI system has the additional benefit of very good
moisture content prediction. Sensor fusion of multiple complementary
NIR MEMS systems based on FPIs could be employed to extend the
spectral range for model development and improve prediction perfor-
mance. Band selection and spectral pre-treatments were key for robust
prediction model development. The three spectroscopy systems in-
vestigated may be employed as in-line PAT tools to provide improved
control and understanding in peppercorn processing.
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